skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Goryll, Michael"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Electrochemical capacitors (ECs) offer superior specific capacitance for energy storage compared to traditional electrolytic capacitors but face limitations in alternating current (AC) filtering due to the need for balancing fast response and high capacitance. This study addresses these challenges by developing a freestanding nanostructured carbon electrode, derived from the rapid carbonization of bacterial cellulose (BC) embedded with zeolitic imidazolate framework 8 (ZIF‐8) and in situ formed carbon nanotubes (CNTs). The electrode exhibits an exceptionally low area resistance of 9.8 mΩ cm2and a high specific capacitance of 2.1 mF cm−2at 120 Hz, maintaining performance even at high frequencies. Stacking these electrodes enhances the capacitance to 5.3 mF cm−2, with the phase angle degrading to −74.4° at 120 Hz; however, they retain a phase angle below −45° up to ≈50 kHz, demonstrating excellent high‐frequency performance. Furthermore, connecting three aqueous units in series as an integrated cell or utilizing organic electrolytes extends the voltage window to 2.4 V, enhancing their suitability for high‐voltage applications. Ripple voltage analysis under various loads and frequencies indicates effective filtering capabilities, highlighting the potential of these nanostructured ECs for next‐generation electronic applications. 
    more » « less